leetcode
  • Coding Interview Prep
  • Data structure
    • String
    • List
    • Matrix
    • Dictionary
    • Tuple
    • Set
    • Tree
    • Stack
  • Array
    • 1_Two Sum
    • 15_Three Sum
    • 21_Merge Two Sorted Lists
    • 26_Remove Duplicates from Sorted Array
    • 27_Remove Element
    • 31_Next Permutation
    • 56_Merge Intervals
    • 57_Insert Interval
    • 66_Plus One
    • 80_Remove Duplicates from Sorted Array II
    • 81_Search in Rotated Sorted Array II
    • 88_Merge Sorted Array
    • 121_Best Time to Buy and Sell Stock
    • 122_Best Time to Buy and Sell Stock II
    • 123_Best Time to Buy and Sell Stock III
    • 167_Two Sum II - Input array is sorted
    • 169_Majority Element
    • 170_Two Sum III - Data Structure Design
    • 189_Rotate Array
    • 238_Product of Array Except Self
    • 243_Shortest Word Distance
    • 244_Shortest Word Distance II
    • 245_Shortest Word Distance III
    • 252_Meeting Rooms
    • 277_Find the Celebrity
    • 283_Move Zeroes
    • 349_Intersection of Two Arrays
    • 350_Intersection of Two Arrays II
    • 605_Can Place Flowers
    • 653_Two Sum IV - Input is a BST
    • 674_Longest Continuous Increasing Subsequence
    • 714_Best Time to Buy and Sell Stock with Transaction Fee
    • 724_Find Pivot Index
    • 747_Largest Number At Least Twice of Others
    • Sort an Array in Wave Form
    • Permute Elements of An Array
    • Reservoir Sampling (online)
    • Reservoir Sampling (offline)
  • Matrix
    • 36_Valid Sudoku
    • 48_Rotate Image
    • 54_Spiral Matrix
    • 59_Spiral Matrix II
    • 118_Pascal's Triangle
    • 119_Pascal's Triangle II
    • 240_Search a 2D Matrix II
    • 311_Sparse Matrix Multiplication
    • 498_Diagonal Traverse
  • String
    • 5_Longest Palindromic Substring
    • 6_ZigZag Conversion
    • 14_Longest Common Prefix
    • 17_Letter Combinations of a Phone number
    • 20_Valid Parentheses
    • 28_Implement strStr()
    • 38_Count and Say
    • 43_Multiply Strings
    • 49_Group Anagrams
    • 93_Restore IP Address
    • 125_Valid Palindrome
    • 151_Reverse Words in a String
    • 157_Read N Characters Given Read4
    • 242_Valid Anagram
    • 266_Palindrome Permutation
    • 344_Reverse String
    • 387_First Unique Character in a String
    • 647_Palindromic Substrings
    • 678_Valid Parenthesis String
    • 680_Valid Palindrome II
    • 709_To Lower Case
    • 819_Most Common Word
    • 833_Find and Replace in String
  • Search
    • 33_Search in Rotated Sorted Array
    • 34_Find First and Last Position of Element in Sorted Array
    • 35_Search Insert Position
    • 153_Find Minimum in Rotated Sorted Array
    • 215_Kth Largest Element in an Array
    • 268_Missing Number
    • 278_First Bad Version
    • 339_Nested List Weight Sum
    • 364_Nested List Weight Sum II
  • Math
    • 12_Integer to Roman
    • 13_Roman to Integer
    • 29_Divide Two Integers
    • 67_Add Binary
    • 69_Sqrt(x)
    • 168_Excel Sheet Column Title
    • 171_Excel Sheet Column Number
    • 204_Count Primes
    • 504_Base 7
    • 628_Maximum Product of Three Numbers
    • Multiply Two Integers
    • Smallest Non-constructible Value
    • SORT5
  • DP
    • 53_Maximum Subarray
    • 152_Maximum Product Subarray
    • 256_Paint House
    • 300_ Longest Increasing Subsequence
    • 747_Min Cost Climbing Stairs
    • 377_Combination Sum IV
  • Hash Table
    • 535_Encode and Decode TinyURL
  • Tree
    • 94_Binary Tree Inorder Traversal
    • 102_Binary Tree Level Order Traversal
    • 103_Binary Tree Zigzag Level Order Traversal
    • 104_Maximum Depth of Binary Tree
    • 113_Path Sum II
    • 144_Binary Tree Preorder Traversal
    • 145_Binary Tree Postorder Traversal
    • 235_Lowest Common Ancestor of a Binary Search Tree
    • 236_Lowest Common Ancestor of a Binary Tree
    • 257_Binary Tree Paths
    • 404_Sum of Left Leaves
    • 543_Diameter of Binary Tree
    • 572_Subtree of Another Tree
    • 637_Average of Levels in Binary Tree
  • Linked List
    • 2_Add Two Numbers
    • 206_Reverse Linked List
    • 234_Palindrome Linked List
  • Recursion
    • Tower of Hanoi
  • Backtracking
    • 51_N-Queens
    • 52_N-Queens II
    • 46_ Permutations
    • 77_ Combinations
    • 78_Subsets
    • 22_Generate Parentheses
    • 131_ Palindrome Partitioning
  • Bit Manipulation
    • 461_Hamming Distance
  • Python
    • for ... else ...
    • dictionary.get( ) vs dictionary[ ]
    • Read and write data file
    • List Comprehension
    • Lambda
    • Receiving Tuples and Dictionaries as Function Parameters
    • The assert statement
    • Miscellaneous
    • Python shortcuts
  • template
  • facebook
Powered by GitBook
On this page
  • Solution 1: Sort + Binary Search
  • Solution 2: Sort + Two Pointers
  • Solution 3: Dictionary

Was this helpful?

  1. Array

350_Intersection of Two Arrays II

[Easy][Array, Two Pointers, Binary Search, Hash Table, Sort]

Given two arrays, write a function to compute their intersection.

Note:

  • Each element in the result should appear as many times as it shows in both arrays.

  • The result can be in any order.

Follow up:

  • What if the given array is already sorted? How would you optimize your algorithm?

  • What if nums1's size is small compared to nums2's size? Which algorithm is better?

  • What if elements of nums2 are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?

Example 1:

Input: nums1 = [1,2,2,1], nums2 = [2,2]
Output: [2,2]

Example 2:

Input: nums1 = [4,9,5], nums2 = [9,4,9,8,4]
Output: [4,9]

Solution 1: Sort + Binary Search

Idea:

  • Sort the two arrays first.

  • Loop over each element in one array, use binary search to find if that element exist in the other array.

  • We can choose smaller length array for the loop, such that the time complexity will be smaller.

  • This approach has advantage if one array is much smaller in size than the other one.

def intersect(nums1, nums2):
    """
    :type nums1: List[int]
    :type nums2: List[int]
    :rtype: List[int]
    """
    # sort two arrays
    nums1.sort()
    nums2.sort()

    def is_present(a):
        # get the location to insert a into nums2 
        # on the left of any existing entries
        import bisect
        i = bisect.bisect_left(nums2, a)
        if i < len(nums2) and nums2[i] == a:
            nums2.pop(i)
            return True
        else:
            return False

        return [a for i, a in enumerate(nums1) if is_present(a)]

Solution 2: Sort + Two Pointers

Idea:

  • First sort the two arrays.

  • Simultaneously advance through the two arrays in increasing order. At each iteration:

    • If the two elements differ, eliminate the small one.

    • If they are the same, append to output and advance both.

  • If the length of two arrays are similar, this solution has advantage.

def intersect(nums1, nums2):
    """
    :type nums1: List[int]
    :type nums2: List[int]
    :rtype: List[int]
    """
    # sort two arrays
    nums1.sort()
    nums2.sort()

    # two pointers
    p1, p2 = 0, 0
    output = []
    while p1 < len(nums1) and p2 < len(nums2):
        if nums1[p1] > nums2[p2]:
            p2 += 1
        elif nums1[p1] < nums2[p2]:
            p1 += 1
        else:
            output.append(nums1[p1])
            p1 += 1
            p2 += 1
    return output

Solution 3: Dictionary

Idea:

  • Count frequency of each number in nums1, store in a dictionary.

  • Loop for each element in nums2, check if it has a pair in the dictionary. If yes, append the element, and decrease the corresponding frequency by 1.

def intersect(nums1, nums2):
    """
    :type nums1: List[int]
    :type nums2: List[int]
    :rtype: List[int]
    """
    counts = {}
    output = []
    # count frequency of each number in nums1
    for num in nums1:
        counts[num] = counts.get(num, 0) + 1
    # check if each number in nums2 has a pair
    for num in nums2:
        if num in counts and counts[num] > 0:
            output.append(num)
            counts[num] -= 1
    return output
Previous349_Intersection of Two ArraysNext605_Can Place Flowers

Last updated 5 years ago

Was this helpful?

Time Complexity: O(mlog⁡n)O(m \log{n})O(mlogn) or O(nlog⁡m)O(n\log{m})O(nlogm)

Space Complexity: O(1)O(1)O(1)

Time Complexity: O(mlog⁡m+nlog⁡n+m+n)O(m \log{m} + n \log{n} + m + n)O(mlogm+nlogn+m+n)

Space Complexity: O(1)O(1)O(1)

Time Complexity: O(m+n)O(m+n)O(m+n)

Space Complexity: O(m)O(m)O(m) or O(n)O(n)O(n), can choose the smaller one.