leetcode
  • Coding Interview Prep
  • Data structure
    • String
    • List
    • Matrix
    • Dictionary
    • Tuple
    • Set
    • Tree
    • Stack
  • Array
    • 1_Two Sum
    • 15_Three Sum
    • 21_Merge Two Sorted Lists
    • 26_Remove Duplicates from Sorted Array
    • 27_Remove Element
    • 31_Next Permutation
    • 56_Merge Intervals
    • 57_Insert Interval
    • 66_Plus One
    • 80_Remove Duplicates from Sorted Array II
    • 81_Search in Rotated Sorted Array II
    • 88_Merge Sorted Array
    • 121_Best Time to Buy and Sell Stock
    • 122_Best Time to Buy and Sell Stock II
    • 123_Best Time to Buy and Sell Stock III
    • 167_Two Sum II - Input array is sorted
    • 169_Majority Element
    • 170_Two Sum III - Data Structure Design
    • 189_Rotate Array
    • 238_Product of Array Except Self
    • 243_Shortest Word Distance
    • 244_Shortest Word Distance II
    • 245_Shortest Word Distance III
    • 252_Meeting Rooms
    • 277_Find the Celebrity
    • 283_Move Zeroes
    • 349_Intersection of Two Arrays
    • 350_Intersection of Two Arrays II
    • 605_Can Place Flowers
    • 653_Two Sum IV - Input is a BST
    • 674_Longest Continuous Increasing Subsequence
    • 714_Best Time to Buy and Sell Stock with Transaction Fee
    • 724_Find Pivot Index
    • 747_Largest Number At Least Twice of Others
    • Sort an Array in Wave Form
    • Permute Elements of An Array
    • Reservoir Sampling (online)
    • Reservoir Sampling (offline)
  • Matrix
    • 36_Valid Sudoku
    • 48_Rotate Image
    • 54_Spiral Matrix
    • 59_Spiral Matrix II
    • 118_Pascal's Triangle
    • 119_Pascal's Triangle II
    • 240_Search a 2D Matrix II
    • 311_Sparse Matrix Multiplication
    • 498_Diagonal Traverse
  • String
    • 5_Longest Palindromic Substring
    • 6_ZigZag Conversion
    • 14_Longest Common Prefix
    • 17_Letter Combinations of a Phone number
    • 20_Valid Parentheses
    • 28_Implement strStr()
    • 38_Count and Say
    • 43_Multiply Strings
    • 49_Group Anagrams
    • 93_Restore IP Address
    • 125_Valid Palindrome
    • 151_Reverse Words in a String
    • 157_Read N Characters Given Read4
    • 242_Valid Anagram
    • 266_Palindrome Permutation
    • 344_Reverse String
    • 387_First Unique Character in a String
    • 647_Palindromic Substrings
    • 678_Valid Parenthesis String
    • 680_Valid Palindrome II
    • 709_To Lower Case
    • 819_Most Common Word
    • 833_Find and Replace in String
  • Search
    • 33_Search in Rotated Sorted Array
    • 34_Find First and Last Position of Element in Sorted Array
    • 35_Search Insert Position
    • 153_Find Minimum in Rotated Sorted Array
    • 215_Kth Largest Element in an Array
    • 268_Missing Number
    • 278_First Bad Version
    • 339_Nested List Weight Sum
    • 364_Nested List Weight Sum II
  • Math
    • 12_Integer to Roman
    • 13_Roman to Integer
    • 29_Divide Two Integers
    • 67_Add Binary
    • 69_Sqrt(x)
    • 168_Excel Sheet Column Title
    • 171_Excel Sheet Column Number
    • 204_Count Primes
    • 504_Base 7
    • 628_Maximum Product of Three Numbers
    • Multiply Two Integers
    • Smallest Non-constructible Value
    • SORT5
  • DP
    • 53_Maximum Subarray
    • 152_Maximum Product Subarray
    • 256_Paint House
    • 300_ Longest Increasing Subsequence
    • 747_Min Cost Climbing Stairs
    • 377_Combination Sum IV
  • Hash Table
    • 535_Encode and Decode TinyURL
  • Tree
    • 94_Binary Tree Inorder Traversal
    • 102_Binary Tree Level Order Traversal
    • 103_Binary Tree Zigzag Level Order Traversal
    • 104_Maximum Depth of Binary Tree
    • 113_Path Sum II
    • 144_Binary Tree Preorder Traversal
    • 145_Binary Tree Postorder Traversal
    • 235_Lowest Common Ancestor of a Binary Search Tree
    • 236_Lowest Common Ancestor of a Binary Tree
    • 257_Binary Tree Paths
    • 404_Sum of Left Leaves
    • 543_Diameter of Binary Tree
    • 572_Subtree of Another Tree
    • 637_Average of Levels in Binary Tree
  • Linked List
    • 2_Add Two Numbers
    • 206_Reverse Linked List
    • 234_Palindrome Linked List
  • Recursion
    • Tower of Hanoi
  • Backtracking
    • 51_N-Queens
    • 52_N-Queens II
    • 46_ Permutations
    • 77_ Combinations
    • 78_Subsets
    • 22_Generate Parentheses
    • 131_ Palindrome Partitioning
  • Bit Manipulation
    • 461_Hamming Distance
  • Python
    • for ... else ...
    • dictionary.get( ) vs dictionary[ ]
    • Read and write data file
    • List Comprehension
    • Lambda
    • Receiving Tuples and Dictionaries as Function Parameters
    • The assert statement
    • Miscellaneous
    • Python shortcuts
  • template
  • facebook
Powered by GitBook
On this page
  • Question
  • Idea
  • Complexity 1
  • Complexity 2
  • Solution 1 (sort)
  • Solution 2 (no sort, using dictionary)
  • Solution 3 (no sort, using count table, same time/space complexity as solution 2)

Was this helpful?

  1. String

242_Valid Anagram

Level: easy

Tag: string, sort, hash table

Question

Given two strings s and t, write a function to determine if t is an anagram of s.

What is Anagram?
- Two strings are anagram if they can be the same after change the order of characters.

For example,
s = "anagram", t = "nagaram", return true.
s = "rat", t = "car", return false.

Note:
You may assume the string contains only lowercase alphabets.

Follow up:
What if the inputs contain unicode characters? How would you adapt your solution to such case?

Idea

If s and t have different lengths, t must not be an anagram of s and we can return early.

For the main body of the algorithm, there are several solutions with different time complexity.

  1. Sort both strings and compare them. If t is an anagram of s, sorting both strings will result in two identical strings.

  2. Count occurrences of each letter in the two strings, store in dictionary, and compare two dictionaries. If t is an anagram of s, the two dictionaries should be equal.

Complexity 1

Complexity 2

Solution 1 (sort)

class Solution(object):
    def isAnagram(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """

        # check if the length of s and t is different
        if len(s) != len(t) :
            return False

        # check if sorted s and sorted t is the same
        return sorted(s) == sorted(t)

Solution 2 (no sort, using dictionary)

class Solution(object):
    def isAnagram(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """

        # check if the length of s and t is different
        if len(s) != len(t) :
            return False

        # create two dictionaries to store the letters and their frequences
        dic1, dic2 = {}, {}
        for item in s:
            dic1[item] = dic1.get(item, 0) + 1
        for item in t:
            dic2[item] = dic2.get(item, 0) + 1
        return dic1 == dic2

Solution 3 (no sort, using count table, same time/space complexity as solution 2)

class Solution(object):
    def isAnagram(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: bool
        """

        # check if the length of s and t is different
        if len(s) != len(t) :
            return False

        # create two count tables to store the counts for 26 letters
        list1, list2 = [0]*26, [0]*26
        for item in s :
            list1[ord(item) - ord("a")] += 1
        for item in t :
            list2[ord(item) - ord("a")] += 1
        return list1 == list2

Questions

  1. What if the inputs contain unicode characters?

Previous157_Read N Characters Given Read4Next266_Palindrome Permutation

Last updated 5 years ago

Was this helpful?

Time complexity :O(nlogn)O(n logn)O(nlogn). Assume that n is the length of sand t , sorting costs O(nlogn)O(nlogn)O(nlogn) and comparing two strings costs O(n)O(n)O(n) . Sorting time dominates and the overall time complexity is O(nlogn)O(nlogn)O(nlogn) .

Space complexity : O(1)O(1)O(1) . Space depends on the sorting implementation which, usually, costs O(1) auxiliary space if heapsortis used.

Time complexity :O(n)O(n)O(n). Because we access each letter only once.

Space complexity : O(1)O(1)O(1) . Because at most we have 26 various letters to store in the dictionary. It's a constant as the length of s and t increase.