leetcode
  • Coding Interview Prep
  • Data structure
    • String
    • List
    • Matrix
    • Dictionary
    • Tuple
    • Set
    • Tree
    • Stack
  • Array
    • 1_Two Sum
    • 15_Three Sum
    • 21_Merge Two Sorted Lists
    • 26_Remove Duplicates from Sorted Array
    • 27_Remove Element
    • 31_Next Permutation
    • 56_Merge Intervals
    • 57_Insert Interval
    • 66_Plus One
    • 80_Remove Duplicates from Sorted Array II
    • 81_Search in Rotated Sorted Array II
    • 88_Merge Sorted Array
    • 121_Best Time to Buy and Sell Stock
    • 122_Best Time to Buy and Sell Stock II
    • 123_Best Time to Buy and Sell Stock III
    • 167_Two Sum II - Input array is sorted
    • 169_Majority Element
    • 170_Two Sum III - Data Structure Design
    • 189_Rotate Array
    • 238_Product of Array Except Self
    • 243_Shortest Word Distance
    • 244_Shortest Word Distance II
    • 245_Shortest Word Distance III
    • 252_Meeting Rooms
    • 277_Find the Celebrity
    • 283_Move Zeroes
    • 349_Intersection of Two Arrays
    • 350_Intersection of Two Arrays II
    • 605_Can Place Flowers
    • 653_Two Sum IV - Input is a BST
    • 674_Longest Continuous Increasing Subsequence
    • 714_Best Time to Buy and Sell Stock with Transaction Fee
    • 724_Find Pivot Index
    • 747_Largest Number At Least Twice of Others
    • Sort an Array in Wave Form
    • Permute Elements of An Array
    • Reservoir Sampling (online)
    • Reservoir Sampling (offline)
  • Matrix
    • 36_Valid Sudoku
    • 48_Rotate Image
    • 54_Spiral Matrix
    • 59_Spiral Matrix II
    • 118_Pascal's Triangle
    • 119_Pascal's Triangle II
    • 240_Search a 2D Matrix II
    • 311_Sparse Matrix Multiplication
    • 498_Diagonal Traverse
  • String
    • 5_Longest Palindromic Substring
    • 6_ZigZag Conversion
    • 14_Longest Common Prefix
    • 17_Letter Combinations of a Phone number
    • 20_Valid Parentheses
    • 28_Implement strStr()
    • 38_Count and Say
    • 43_Multiply Strings
    • 49_Group Anagrams
    • 93_Restore IP Address
    • 125_Valid Palindrome
    • 151_Reverse Words in a String
    • 157_Read N Characters Given Read4
    • 242_Valid Anagram
    • 266_Palindrome Permutation
    • 344_Reverse String
    • 387_First Unique Character in a String
    • 647_Palindromic Substrings
    • 678_Valid Parenthesis String
    • 680_Valid Palindrome II
    • 709_To Lower Case
    • 819_Most Common Word
    • 833_Find and Replace in String
  • Search
    • 33_Search in Rotated Sorted Array
    • 34_Find First and Last Position of Element in Sorted Array
    • 35_Search Insert Position
    • 153_Find Minimum in Rotated Sorted Array
    • 215_Kth Largest Element in an Array
    • 268_Missing Number
    • 278_First Bad Version
    • 339_Nested List Weight Sum
    • 364_Nested List Weight Sum II
  • Math
    • 12_Integer to Roman
    • 13_Roman to Integer
    • 29_Divide Two Integers
    • 67_Add Binary
    • 69_Sqrt(x)
    • 168_Excel Sheet Column Title
    • 171_Excel Sheet Column Number
    • 204_Count Primes
    • 504_Base 7
    • 628_Maximum Product of Three Numbers
    • Multiply Two Integers
    • Smallest Non-constructible Value
    • SORT5
  • DP
    • 53_Maximum Subarray
    • 152_Maximum Product Subarray
    • 256_Paint House
    • 300_ Longest Increasing Subsequence
    • 747_Min Cost Climbing Stairs
    • 377_Combination Sum IV
  • Hash Table
    • 535_Encode and Decode TinyURL
  • Tree
    • 94_Binary Tree Inorder Traversal
    • 102_Binary Tree Level Order Traversal
    • 103_Binary Tree Zigzag Level Order Traversal
    • 104_Maximum Depth of Binary Tree
    • 113_Path Sum II
    • 144_Binary Tree Preorder Traversal
    • 145_Binary Tree Postorder Traversal
    • 235_Lowest Common Ancestor of a Binary Search Tree
    • 236_Lowest Common Ancestor of a Binary Tree
    • 257_Binary Tree Paths
    • 404_Sum of Left Leaves
    • 543_Diameter of Binary Tree
    • 572_Subtree of Another Tree
    • 637_Average of Levels in Binary Tree
  • Linked List
    • 2_Add Two Numbers
    • 206_Reverse Linked List
    • 234_Palindrome Linked List
  • Recursion
    • Tower of Hanoi
  • Backtracking
    • 51_N-Queens
    • 52_N-Queens II
    • 46_ Permutations
    • 77_ Combinations
    • 78_Subsets
    • 22_Generate Parentheses
    • 131_ Palindrome Partitioning
  • Bit Manipulation
    • 461_Hamming Distance
  • Python
    • for ... else ...
    • dictionary.get( ) vs dictionary[ ]
    • Read and write data file
    • List Comprehension
    • Lambda
    • Receiving Tuples and Dictionaries as Function Parameters
    • The assert statement
    • Miscellaneous
    • Python shortcuts
  • template
  • facebook
Powered by GitBook
On this page

Was this helpful?

  1. String

833_Find and Replace in String

[Medium]

To some stringS, we will perform some replacement operations that replace groups of letters with new ones (not necessarily the same size).

Each replacement operation has3parameters: a starting indexi, a source word x and a target word y. The rule is that ifx starts at positioni in the original stringS, then we will replace that occurrence of x with y. If not, we do nothing.

For example, if we have S = "abcd" and we have some replacement operation i = 2, x = "cd", y = "ffff", then because "cd" starts at position2 in the original stringS, we will replace it with"ffff".

Using another example onS = "abcd", if we have both the replacement operationi = 0, x = "ab", y = "eee", as well as another replacement operation i = 2, x = "ec", y = "ffff", this second operation does nothing because in the original string S[2] = 'c', which doesn't match x[0] = 'e'.

All these operations occur simultaneously. It's guaranteed that there won't be any overlap in replacement: for example, S = "abc", indexes = [0, 1], sources = ["ab","bc"]is not a valid test case.

Example 1:

Input: 
S = "abcd", indexes = [0,2], sources = ["a","cd"], targets = ["eee","ffff"]

Output: 
"eeebffff"

Explanation:
 "a" starts at index 0 in S, so it's replaced by "eee".
"cd" starts at index 2 in S, so it's replaced by "ffff".

Example 2:

Input: 
S = "abcd", indexes = [0,2], sources = ["ab","ec"], targets = ["eee","ffff"]

Output: 
"eeecd"

Explanation: "ab" starts at index 0 in S, so it's replaced by "eee". "ec" doesn't starts at index 2 in the original
 S, so we do nothing.

Notes:

  1. 0<= indexes.length = sources.length = targets.length<= 100

  2. 0<indexes[i]<S.length<= 1000

  3. All characters in given inputs are lowercase letters.

Solution

Idea:

  • Zip indexes, sources and targets, and sort then by descending order on indexes

  • Loop form the largest indexes, check if the replacing condition satisfies, if so, replace using array assignment.

  • Must start from the right, because otherwise, the index of the original S will be changed after on replacement.

  • S[i:j] = A is doable for list A which may have different size of S[i:j] as long as we use slicing as S[i:j] not only use S.

def findReplaceString(S, indexes, sources, targets):
    """
    :type S: str
    :type indexes: List[int]
    :type sources: List[str]
    :type targets: List[str]
    :rtype: str
    """
    S = list(S)

    # loop backwards
    for i, x, y in sorted(zip(indexes, sources, targets), reverse = True):
        if all(i+k < len(S) and S[i+k] == x[k] for k in range(len(x))):
            S[i:i+len(x)] = list(y)

    return "".join(S)
Previous819_Most Common WordNextSearch

Last updated 5 years ago

Was this helpful?