leetcode
  • Coding Interview Prep
  • Data structure
    • String
    • List
    • Matrix
    • Dictionary
    • Tuple
    • Set
    • Tree
    • Stack
  • Array
    • 1_Two Sum
    • 15_Three Sum
    • 21_Merge Two Sorted Lists
    • 26_Remove Duplicates from Sorted Array
    • 27_Remove Element
    • 31_Next Permutation
    • 56_Merge Intervals
    • 57_Insert Interval
    • 66_Plus One
    • 80_Remove Duplicates from Sorted Array II
    • 81_Search in Rotated Sorted Array II
    • 88_Merge Sorted Array
    • 121_Best Time to Buy and Sell Stock
    • 122_Best Time to Buy and Sell Stock II
    • 123_Best Time to Buy and Sell Stock III
    • 167_Two Sum II - Input array is sorted
    • 169_Majority Element
    • 170_Two Sum III - Data Structure Design
    • 189_Rotate Array
    • 238_Product of Array Except Self
    • 243_Shortest Word Distance
    • 244_Shortest Word Distance II
    • 245_Shortest Word Distance III
    • 252_Meeting Rooms
    • 277_Find the Celebrity
    • 283_Move Zeroes
    • 349_Intersection of Two Arrays
    • 350_Intersection of Two Arrays II
    • 605_Can Place Flowers
    • 653_Two Sum IV - Input is a BST
    • 674_Longest Continuous Increasing Subsequence
    • 714_Best Time to Buy and Sell Stock with Transaction Fee
    • 724_Find Pivot Index
    • 747_Largest Number At Least Twice of Others
    • Sort an Array in Wave Form
    • Permute Elements of An Array
    • Reservoir Sampling (online)
    • Reservoir Sampling (offline)
  • Matrix
    • 36_Valid Sudoku
    • 48_Rotate Image
    • 54_Spiral Matrix
    • 59_Spiral Matrix II
    • 118_Pascal's Triangle
    • 119_Pascal's Triangle II
    • 240_Search a 2D Matrix II
    • 311_Sparse Matrix Multiplication
    • 498_Diagonal Traverse
  • String
    • 5_Longest Palindromic Substring
    • 6_ZigZag Conversion
    • 14_Longest Common Prefix
    • 17_Letter Combinations of a Phone number
    • 20_Valid Parentheses
    • 28_Implement strStr()
    • 38_Count and Say
    • 43_Multiply Strings
    • 49_Group Anagrams
    • 93_Restore IP Address
    • 125_Valid Palindrome
    • 151_Reverse Words in a String
    • 157_Read N Characters Given Read4
    • 242_Valid Anagram
    • 266_Palindrome Permutation
    • 344_Reverse String
    • 387_First Unique Character in a String
    • 647_Palindromic Substrings
    • 678_Valid Parenthesis String
    • 680_Valid Palindrome II
    • 709_To Lower Case
    • 819_Most Common Word
    • 833_Find and Replace in String
  • Search
    • 33_Search in Rotated Sorted Array
    • 34_Find First and Last Position of Element in Sorted Array
    • 35_Search Insert Position
    • 153_Find Minimum in Rotated Sorted Array
    • 215_Kth Largest Element in an Array
    • 268_Missing Number
    • 278_First Bad Version
    • 339_Nested List Weight Sum
    • 364_Nested List Weight Sum II
  • Math
    • 12_Integer to Roman
    • 13_Roman to Integer
    • 29_Divide Two Integers
    • 67_Add Binary
    • 69_Sqrt(x)
    • 168_Excel Sheet Column Title
    • 171_Excel Sheet Column Number
    • 204_Count Primes
    • 504_Base 7
    • 628_Maximum Product of Three Numbers
    • Multiply Two Integers
    • Smallest Non-constructible Value
    • SORT5
  • DP
    • 53_Maximum Subarray
    • 152_Maximum Product Subarray
    • 256_Paint House
    • 300_ Longest Increasing Subsequence
    • 747_Min Cost Climbing Stairs
    • 377_Combination Sum IV
  • Hash Table
    • 535_Encode and Decode TinyURL
  • Tree
    • 94_Binary Tree Inorder Traversal
    • 102_Binary Tree Level Order Traversal
    • 103_Binary Tree Zigzag Level Order Traversal
    • 104_Maximum Depth of Binary Tree
    • 113_Path Sum II
    • 144_Binary Tree Preorder Traversal
    • 145_Binary Tree Postorder Traversal
    • 235_Lowest Common Ancestor of a Binary Search Tree
    • 236_Lowest Common Ancestor of a Binary Tree
    • 257_Binary Tree Paths
    • 404_Sum of Left Leaves
    • 543_Diameter of Binary Tree
    • 572_Subtree of Another Tree
    • 637_Average of Levels in Binary Tree
  • Linked List
    • 2_Add Two Numbers
    • 206_Reverse Linked List
    • 234_Palindrome Linked List
  • Recursion
    • Tower of Hanoi
  • Backtracking
    • 51_N-Queens
    • 52_N-Queens II
    • 46_ Permutations
    • 77_ Combinations
    • 78_Subsets
    • 22_Generate Parentheses
    • 131_ Palindrome Partitioning
  • Bit Manipulation
    • 461_Hamming Distance
  • Python
    • for ... else ...
    • dictionary.get( ) vs dictionary[ ]
    • Read and write data file
    • List Comprehension
    • Lambda
    • Receiving Tuples and Dictionaries as Function Parameters
    • The assert statement
    • Miscellaneous
    • Python shortcuts
  • template
  • facebook
Powered by GitBook
On this page

Was this helpful?

  1. Data structure

Dictionary

Mutable, unordered pairs (keys and values) of objects. Keys must be hashable.

Advantages: O(1) searching for keys. Makes it easy to create trees and other hierarchical data structures. Can be used to create self-documenting code. Many problems can be described in terms of key-value pairs.

Disadvantages: Only lookup by key. Uses more memory than lists and tuples. Keys must be hashable.

Creating

{'a':1, 'b':2, 'c':3}      # {'a': 1, 'b': 2, 'c': 3}

Creating from other type

dict(['a',1], ['b',2], ['c',3])      # {'a': 1, 'b': 2, 'c': 3}
dict(('a',1), ('b',2), ('c',3))      # {'a': 1, 'b': 2, 'c': 3}

Retrieving from a key

# 1st way
d = {'a':1, 'b':2, 'c':3}
d['a']         # 1
d['z']         # raises KeyError

# 2nd way
d = {'a':1, 'b':2, 'c':3}
d.get('a')     # 1

Add a key-value pair

d = {'a':1, 'b':2, 'c':3}
d['d'] = 100
d              # {'a': 100, 'b': 2, 'c': 3, 'd': 100}

Replacing an existing value

d = {'a':1, 'b':2, 'c':3}
d['a'] = 100
d              # {'a': 100, 'b': 2, 'c': 3}

Replacing multiple existing values

d = {'a':1, 'b':2 }
x = {'a':555, 'z':987}
d.update(x, y=10)     # Returns None
d                     # {'a': 555, 'b': 2, 'y': 10, 'z': 987}

Removing an element

d = {'a':1, 'b':2, 'c':3}
del(d['a'])
d                     # {'c': 3, 'b': 2}

Getting the keys

d = {'a':1, 'b':2, 'c':3}
d.keys()              # ['a', 'c', 'b'] (Python 2)
d.keys()              # dict_keys(['a', 'b', 'c']) (Python 3)

Getting the values

d = {'a':1, 'b':2, 'c':3}
d.values()            # [1, 2, 3] (Python 2)
d.values()            # dict_values([1, 2, 3]) (Python 3)

Iterating over the keys

d = {'a':1, 'b':2, 'c':3}
for k in d:
    print("{0}: {1}".format(k, d[k]))

Iterating over the pairs

d = {'a':1, 'b':2, 'c':3}
for k, v in d.items()
    print("{0}: {1}".format(k, v)

Iterating over the sorted keys

d = {'a':1, 'b':2, 'c':3}
for k in sorted(d):
    print("{0}: {1}".format(k, d[k]))

Find the key with max/min value

my_dict = {'x':500, 'y':5874, 'z': 560}
key_max = max(my_dict.keys(), key=(lambda k: my_dict[k]))
key_min = min(my_dict.keys(), key=(lambda k: my_dict[k]))

Check membership

my_dict = {'x':500, 'y':5874, 'z': 560}
print 'x' in my_dict    # True

Update frequency

def get_counts(sequence):
    counts = {}
    for x in sequence:
        if x in counts:
            counts[x] += 1
        else:
            counts[x] = 1
    return counts

# a easier way
from collections import defaultdict
def get_counts2(sequence):
    counts = defaultdict(int) # values will initialize to 0
    for x in sequence:
        counts[x] += 1
    return counts
PreviousMatrixNextTuple

Last updated 5 years ago

Was this helpful?