leetcode
  • Coding Interview Prep
  • Data structure
    • String
    • List
    • Matrix
    • Dictionary
    • Tuple
    • Set
    • Tree
    • Stack
  • Array
    • 1_Two Sum
    • 15_Three Sum
    • 21_Merge Two Sorted Lists
    • 26_Remove Duplicates from Sorted Array
    • 27_Remove Element
    • 31_Next Permutation
    • 56_Merge Intervals
    • 57_Insert Interval
    • 66_Plus One
    • 80_Remove Duplicates from Sorted Array II
    • 81_Search in Rotated Sorted Array II
    • 88_Merge Sorted Array
    • 121_Best Time to Buy and Sell Stock
    • 122_Best Time to Buy and Sell Stock II
    • 123_Best Time to Buy and Sell Stock III
    • 167_Two Sum II - Input array is sorted
    • 169_Majority Element
    • 170_Two Sum III - Data Structure Design
    • 189_Rotate Array
    • 238_Product of Array Except Self
    • 243_Shortest Word Distance
    • 244_Shortest Word Distance II
    • 245_Shortest Word Distance III
    • 252_Meeting Rooms
    • 277_Find the Celebrity
    • 283_Move Zeroes
    • 349_Intersection of Two Arrays
    • 350_Intersection of Two Arrays II
    • 605_Can Place Flowers
    • 653_Two Sum IV - Input is a BST
    • 674_Longest Continuous Increasing Subsequence
    • 714_Best Time to Buy and Sell Stock with Transaction Fee
    • 724_Find Pivot Index
    • 747_Largest Number At Least Twice of Others
    • Sort an Array in Wave Form
    • Permute Elements of An Array
    • Reservoir Sampling (online)
    • Reservoir Sampling (offline)
  • Matrix
    • 36_Valid Sudoku
    • 48_Rotate Image
    • 54_Spiral Matrix
    • 59_Spiral Matrix II
    • 118_Pascal's Triangle
    • 119_Pascal's Triangle II
    • 240_Search a 2D Matrix II
    • 311_Sparse Matrix Multiplication
    • 498_Diagonal Traverse
  • String
    • 5_Longest Palindromic Substring
    • 6_ZigZag Conversion
    • 14_Longest Common Prefix
    • 17_Letter Combinations of a Phone number
    • 20_Valid Parentheses
    • 28_Implement strStr()
    • 38_Count and Say
    • 43_Multiply Strings
    • 49_Group Anagrams
    • 93_Restore IP Address
    • 125_Valid Palindrome
    • 151_Reverse Words in a String
    • 157_Read N Characters Given Read4
    • 242_Valid Anagram
    • 266_Palindrome Permutation
    • 344_Reverse String
    • 387_First Unique Character in a String
    • 647_Palindromic Substrings
    • 678_Valid Parenthesis String
    • 680_Valid Palindrome II
    • 709_To Lower Case
    • 819_Most Common Word
    • 833_Find and Replace in String
  • Search
    • 33_Search in Rotated Sorted Array
    • 34_Find First and Last Position of Element in Sorted Array
    • 35_Search Insert Position
    • 153_Find Minimum in Rotated Sorted Array
    • 215_Kth Largest Element in an Array
    • 268_Missing Number
    • 278_First Bad Version
    • 339_Nested List Weight Sum
    • 364_Nested List Weight Sum II
  • Math
    • 12_Integer to Roman
    • 13_Roman to Integer
    • 29_Divide Two Integers
    • 67_Add Binary
    • 69_Sqrt(x)
    • 168_Excel Sheet Column Title
    • 171_Excel Sheet Column Number
    • 204_Count Primes
    • 504_Base 7
    • 628_Maximum Product of Three Numbers
    • Multiply Two Integers
    • Smallest Non-constructible Value
    • SORT5
  • DP
    • 53_Maximum Subarray
    • 152_Maximum Product Subarray
    • 256_Paint House
    • 300_ Longest Increasing Subsequence
    • 747_Min Cost Climbing Stairs
    • 377_Combination Sum IV
  • Hash Table
    • 535_Encode and Decode TinyURL
  • Tree
    • 94_Binary Tree Inorder Traversal
    • 102_Binary Tree Level Order Traversal
    • 103_Binary Tree Zigzag Level Order Traversal
    • 104_Maximum Depth of Binary Tree
    • 113_Path Sum II
    • 144_Binary Tree Preorder Traversal
    • 145_Binary Tree Postorder Traversal
    • 235_Lowest Common Ancestor of a Binary Search Tree
    • 236_Lowest Common Ancestor of a Binary Tree
    • 257_Binary Tree Paths
    • 404_Sum of Left Leaves
    • 543_Diameter of Binary Tree
    • 572_Subtree of Another Tree
    • 637_Average of Levels in Binary Tree
  • Linked List
    • 2_Add Two Numbers
    • 206_Reverse Linked List
    • 234_Palindrome Linked List
  • Recursion
    • Tower of Hanoi
  • Backtracking
    • 51_N-Queens
    • 52_N-Queens II
    • 46_ Permutations
    • 77_ Combinations
    • 78_Subsets
    • 22_Generate Parentheses
    • 131_ Palindrome Partitioning
  • Bit Manipulation
    • 461_Hamming Distance
  • Python
    • for ... else ...
    • dictionary.get( ) vs dictionary[ ]
    • Read and write data file
    • List Comprehension
    • Lambda
    • Receiving Tuples and Dictionaries as Function Parameters
    • The assert statement
    • Miscellaneous
    • Python shortcuts
  • template
  • facebook
Powered by GitBook
On this page
  • Solution 1: Linear Search
  • Solution 2: Binary Search

Was this helpful?

  1. Array

57_Insert Interval

Previous56_Merge IntervalsNext66_Plus One

Last updated 5 years ago

Was this helpful?

[Hard][Array, Sort]

Given a set of _non-overlapping _intervals, insert a new interval into the intervals (merge if necessary).

You may assume that the intervals were initially sorted according to their start times.

Example 1:

Input: intervals = [[1,3],[6,9]], newInterval = [2,5]

Output: [[1,5],[6,9]]

Example 2:

Input: intervals = 
[[1,2],[3,5],[6,7],[8,10],[12,16]], newInterval = [4,8]
Output: [[1,2],[3,10],[12,16]]

Solution 1: Linear Search

Idea:

  • First search for the position where we should insert or merge the new interval. The intervals on the left will be neglected.

  • Then search for the position where we end insertion or merge. The intervals on the right will be neglected.

  • Finally insert or merge the new interval.

Time Complexity: O(n)O(n)O(n)

# Definition for an interval.
# class Interval(object):
#     def __init__(self, s=0, e=0):
#         self.start = s
#         self.end = e

def insert(intervals, newInterval):
    """
    :type intervals: List[Interval]
    :type newInterval: Interval
    :rtype: List[Interval]
    """
    # sort the intervals by starting point
    # intervals.sort(key=lambda x: x.start)

    # search the position to start insert/merge
    i = 0
    while i < len(intervals) and newInterval.start > intervals[i].end:
        i += 1
    # if the starting point of new interval is larger than every interval
    # insert new interval to the end
    if i == len(intervals):
        return intervals + [newInterval]

    # search the position to finish insert/merge
    j = i
    while j < len(intervals) and newInterval.end >= intervals[j].start:
        j += 1

    if j == i:
        # insert the new interval
        intervals[i:j] = [newInterval]
    else:
        # merge the new interval with overlapping intervals
        left = min(intervals[i].start, newInterval.start)
        right = max(intervals[j-1].end, newInterval.end)
        # insert into the intervals
        intervals[i:j] = [Interval(left, right)]
    return intervals

Solution 2: Binary Search

Idea:

  • Extract all the starting values from the intervals, find the right place to insert the starting point in the new interval by binary search

  • Extract all the ending values from the intervals, find the right place to insert the ending point in the new interval bu binary search

  • Insert or merge the new interval into the overlapping place.

# Definition for an interval.
# class Interval(object):
#     def __init__(self, s=0, e=0):
#         self.start = s
#         self.end = e

def insert(intervals, newInterval):
    """
    :type intervals: List[Interval]
    :type newInterval: Interval
    :rtype: List[Interval]
    """        
    left, right = newInterval.start, newInterval.end
    start = [interval.start for interval in intervals]
    end = [interval.end for interval in intervals]
    i = bisect.bisect_left(start, left)
    j = bisect.bisect(end, right)
    if i > 0 and left <= intervals[i-1].end:
        left = intervals[i-1].start
        i = i - 1
    if j < len(intervals) and right >= intervals[j].start:
        right = intervals[j].end
        j = j + 1
    intervals[i:j] = [Interval(left, right)]
    return intervals

Space Complexity: O(1)O(1)O(1)

Time Complexity: O(log⁡n)O(\log{n})O(logn)

Space Complexity: O(1)O(1)O(1)